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Overview

Timeline Partners
» Project start date: 10/1/2016
» Project end date: 9/30/2019

= Percent Complete: 55%
[Deliverable complete for Quarter 2 in FY18]

» Pacific Northwest National Laboratory
» National Renewable Energy Laboratory

Barriers
Budget = Accurately measuring the transportation
= Total project funding: system:[wtljde %nergtgy 'mf"’(‘thS ﬁf I
connected and automated vehicles
= DOE Share: $310K for FY18 (CAVS)
: Contra.Lctor §hare: I\_IA = Computational difficulty of accurately
* Fund received in FY17: $270K simulating and optimizing large- scale
= Fund for FY18: $310K network of signalized intersections,
= ORNL Share: $200K = Implementation of traffic control
= PNNL Share: $110K algorithms in a mixed traffic environment

of legacy and CAVs.
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Relevance/Objectives

» Overall objectives

— Investigate the impact of traffic signal systems in an Automated, Connected,
Electric, and/or Shared (ACES) environment focusing on mobility, energy, and
productivity

— Develop robust and scalable signal control schemes leveraging data and
connectivity with the goal—maximizing mobility with minimal energy

* Objectives for FY18

— To develop signal control algorithms to minimize energy consumption from urban
signalized transportation networks,

— To understand the impact of the market share of CAVs on the performance of the
developed algorithms through sensitivity analysis,

— To identify potential sensor technologies that enables the data and
communication environment for real-world implementation.

* Impact
— Provide an assessment of the impact of signal control optimization in an ACES
environment in terms of energy minimization, and mobility improvement
— Estimate the impact of CAV market-share on signal system performance
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Timeline Milestone(s) Deliverable(s) Status
FY18Q1 Setting energy-based objectives in No Deliverable NA
signal control schemes
FY18Q2 Building the mathematical framework of [A report on stochastic control of Complete
control algorithms and base simulation |traffic signal systems
FY18Q3 Implementation of stochastic control No Deliverable On Track
theory based signal scheme and initial
results for a corridor
FY18Q4 Development of machine-learning based | A paper with results from a real-world|On Track
signal control with energy and mobility  |test network using VISSIM-traffic (Obtained
objectives simulator tool—demonstration of initial
energy minimization by signal control [results)
FY19 Develop distributed control for a network [Report on the demonstration of
of signalized intersections—scalability; |scalability for large networks
Develop fault-tolerant signal systems
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Approach: Reinforcement Learning-Overview

« Signal control problem can be VISSIM [3]

. . COM COM
formulated as Markov-Decision-Process I = s [
(MDP) and can be solved using j > Traffic
reinforcement learning (RL) ST

* RL technique does not need prior  Action: SHsehE i
information on transition probabilities— | B9 Fhase Energy Consumption,
no value function is needed Duration Control Delay

* Near optimal solution is possible ﬁ 4 g

« RL can theoretically reach optimal | Update Q-values

. . Exploration and (Learning)
solution as learning converges [1, 2] Exploitation

. Connected vehicle environment j ? RL Algorithm: O-
provides the data and feedback Learning/SARSA K :
capability to execute RL-based signal /RMART

control

[1] A. Gosavi, Simulation-Based Optimization: Parametric Optimization
Techniques & Reinforcement Learning (2" Edition). Springer, 2015.
[2] R. S. Sutton and A. G. Barto, Reinforcement learning: An
introduction (2n Edition), vol. 1. Cambridge Univ Press, 2018.

[3] https://www.ptvgroup.com/en-us/solutions/products/ptv-vissim/
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Approach: Reinforcement Learning-Data

=g o [y o oy s

Calculate measures I

Collect BSM data

—

1. Vehicle ID L gtate of the State, Rewards + Q-
2. Speed — VLR, =—>| values
i 2. Control delay,
3. Acceleration J
o 3. Energy
4. Position consumption RL-Signal control

CV environment facilitates communication platform between vehicles, vehicle to
infrastructure and infrastructure components through vehicle-to-vehicle (V2V), V2I
and 12I communication. The RL algorithm leverages V2l and I2] communications to
ensure the information flow among the agents. Using V2I communication, vehicles
continuously broadcast their status, such as speed, acceleration, position to an
agent through BSM. Using the shared information from CVs, an agent determines
the number of vehicles stopped in a queue based on their speed and acceleration.
o®
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Approach: Reinforcement Learning-Traffic State

Intersection n — 1 Intersection n Intersection n + 1

= All the states in an intersection are presented with different colors. For instance,
states corresponding to North-Bound and South-Bound Traffic are represented
by red and black arrows respectively,

» \We considered both upstream and downstream queues to represent the state of
an intersection,

» A clustering based technique is used to make the state-space finite for a
tractable implementation.
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Approach: Reinforcement Learning-Energy Consumption

m: Vehicle mass, Energy consumption is computed based on Vehicle Specific Power
V:: Vehicle speed, (VSP) [1, 2]—The VSP equation differs for different powertrain such as
@ Yehicle Acceleration. _glectric and hybrid vehicles

& "Mass Factor” or equivalente ec d(Ey \E )

transitional mass of the rotating kinect T potential ) )

components (i is used to VSP = dr T FRollmg XV + Faer odynamic X 4

show the gear-dependence), m

h: Altitude of the vehicle, 1 CD X A 5

©: Slope of the road, :V[a(l +£i) +gXxX0O+gx CR] + _pa—(V _|_VW) %V

g: Acceleartion due to gravity, 2 m

Cg: Coefficient of rolling resistance, 3
Cp: Drag coefficient, VSPpy =V x [1.1a+9.81 % grade(%) +0.132] 4+0.000302 x V
A: Frontal Area of the vehicle,

pu: Aumblent air density, VSPypy =V X [a+9.81grade(%) 4 0.09199] 4-0.000169 x V°

Vw: Headwind into the vehicle.

The power requirement, VSP values can be converted 1} jimenez-palacios, J. L. Understanding and

into fuel consumption with heat-content computation and  Quantifying Motor Vehicle Emissions with Vehicle
Specific Power and TILDAS Remote Sensing. PhD

brake-thermal, average drive train efficiency values [2, 3] dissertation. Massachusetts Institute of Technology,
Cambridge, 1999.
[2] National Research Council. Assessment of fuel

Lower Lower economy technologies for light-duty vehicles. National
Heat of Heat of Carbon Carbon Academies Press, 2011.
Combustion Combustion Density  Content Content [3] Sovran, G., & Blaser, D. (2006). Quantifying the
(Btu/gal) (Btu/lb) (Ib/gal)  (g/gal) (g/lb) potential impacts of regenerative braking on a
} vehicle's tractive-fuel consumption for the US,
G?S(’lme 116,100 18,690 6.21 2421 392 European, and Japanese driving schedules (No. 2006-
Dlesel 128,500 ].8,400 6.98 2,778 392 01_0664) SAE Technical Paper.
Ethanol (E85) 76,300 11,580 6.59 1,560 237

SOURCE: After GREET Program, Argonne National Laboratory,
http://www.transportation.anl.gov/modeling_simulation/GREET/. B OAK -
’ ’ ‘RIDGE Z'ENREL 10




Approach: Reinforcement Learning-Control Strategies

Initialization:
Iteration counter, k = 0,
Initial Q-values, Q(s,a) « 0,
Learning rate at iteration k, aj, = i
Discount factor, y = 0.8

Collect data from vehicles and find

the current state, s and a*

Simulation setup for
training and evaluation

R
Parameters Training Exploration- Testing
Yes Training? i exploitation
. Number  of 400 50 33
Exploration Evaluation
Exploitation el TSt runs
Time per run 900s 900s 900s
Select random S;l.e“ gr ‘:edy Action-taking 6s 6s 6s
action, a a I(g?‘l,';[;om interval
Select £-greedy action, Action taking Random g — greedy greedy
a from Q-Table
.| Observed reward, r foran | type method
7 action a o

Determine resulting state, s’

v

Update Qualue: Details can be found at:
Q(s,a) « 1 - a)Q(s,a) + a[r(s,a,s') + ymaxy,(;)Q(s', b)] SMA B. Al Islam, H. M. A. Aziz, H. Wang, and S.
" Young, “Minimizing energy consumption from
Update the number of vehicles in connected signalized intersections by reinforcement
each link for time step k + 1 learning” submitted to IEEE ITSC 2018 conference.
/

Setk: =k +1 e
Yes

No

—
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Approach: Reinforcement Learning-Network Calibration

 Test network from NG-SIM: e Create the surface function**:
Detailed vehicle trajectory gl Z (MOE]™ — ) BiXip)
1 iEn IE
gatai on L(:?nk?gShbm. | Sensitivity analysis for all
pu ev.ar IFINE g T5a controllable parameters in v
City neighborhood of Los VISSIM
Angeles, CA / Calculate f3;, forall j € /
Y P

e Surface function based

5 - Select a set of controllable
calibration approach

parameters, P

» Target metric: Trip travel

time Y 2 Find optimal controllable
Create a sample of n size .
parameters:

based on Latin Hypercube min, |MOE““ B MOESim||

sampling* technigue ; *
s.t.
Y
< x; <
Run each sample for Xmin = Xi = Xmax
multiple (e.g., 3 or more) MOE®™ = BiX;

random seeds JepP

* Iman, Ronald L. "Latin hypercube sampling." Encyclopedia of Y
quantitative risk analysis and assessment (2008).
**Park, Byungkyu, and J. Schneeberger. "Microscopic
simulation model calibration and validation: case study of End
Aerial View Of Lan ke rShim BIVd . CA VISSII\{II simulation r_nodel fora coordinat.ed actuated signal

system." Transportation Research Record: Journal of the
Transportation Research Board 1856 (2003): 185-192.
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Approach: Stochastic Control

Probability density

function for Queue
Signal Timing Intersection Length

e Controller —> System =T 7 (y,u)

Target Probability
Density Function

A
= The model takes control inputs

as the distribution of the signal
settings—phase scheduling Approaching Vehicle as
and duration random inputs

ok(x,t) ok(x,t)w(x,t) .
o + x = Bu(t) + noise(x, t) < . 4

u(t)zrn-]e n e } Feedback path

Time in Yellow
Time in Red

k(x, t): Density of the flow
= Systems subjected to random

ot NG H ol (vehicle/length),
input noises, where contro .
should be performed for output Wi, 1) space fieatl apeed

probability density functions oRthe ﬂOW NN

o @ H. Wang, Bounded Dynamic Stochastic Distributions Modelling and o
-ﬂ;‘aw Control, Springer-Verlag (London) Ltd, March, 2000. (ISBN 1-85233-187- Argonne° ) mu %RI[B(GE 3 'NREL 13
o 9, total page number: 176). (Wi oo o A
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Approach: Stochastic Control

= —=p=p=p=p ) 0
A
[ > | | >
M a a b
vy (y,u) =queueing length probability density function
at time t per controlled by traffic light timing



Technical accomplishments

[1] H. Wang, H. M. A. Aziz, S. Yang and S. Patil, "Control of Networked Traffic Flow
Distribution - A Stochastic Distribution System Perspective”, Proceedings of International
Conference on loT and Machine Learning, invited publication, Liverpool, October, 2017,

[2] H. M. A. Aziz, “Learning-based Signal Control Algorithms in Connected And Automated
Transportation”-Presented at 2017 INFORMS Annual Meeting, October 22-25, Houston,
Texas, USA.

[3] T. Yang, Y. Wan, H. Wang and Z. Lin, Global Optimal Consensus for Discrete-time Multi-
agent Systems with Bounded Controls, Automatica, Accepted in May 2018.

[4] H. Wang, H. M. A. Aziz and S. Young, Non-Signalized Intersections Control —
Collaborative Fault Tolerant Control Perspective, ASCE International Conference on
Transportation and Development, Podium Presentation, Pittsburgh, July, 2018,

[5] SMA B. Al Islam, H. M. A. Aziz, H. Wang, and S. Young, “Minimizing energy consumption
from connected signalized intersections by reinforcement learning” submitted to IEEE ITSC
2018 conference.
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Findings: RL Approach

Analysis using RL approach -~
revealed tradeoff between Percentage Change from Base Case (Existing Signal

energy and delay. control in NGSIM network) for Different Strategies

* Energy minimization strategy
yields 47% reduction in energy
but at a 65.6% increase in
system travel time

o W Strategy: Minimize Energy

-6.7 with Penalty for Stops

Energy -47 L
10.5 Strategy: Minimize Energy

—I_
Delay minimization strategy _ 27 Strategy: Minimize Delay
yields 2% decrease in system BARCURIEVEIRIHE 65.6

travel time, but a 27% increase -2

in energy j E—
_

51.1

Energy minimization with Average queue time

penalty for stops yields 6.7% -16.8

reduction in energy with 27%

increase in system travel time 50.8
Total queue time

A balanced approach with
desired energy minimization with
acceptable delay is required and
our developed technique with
fine tuned training can achieve

e
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Findings: RL Approach

Results from 33 sample
runs: mean and bounds
are reported at 95%
confidence interval

The range of values
in the population is
determined as follows:

s _ s
— ta/z (ﬁ) <u< X + t(x/2 (ﬁ)

Mean of the sample

=  Standard deviation of the sample

= Mean of the population

== o |

= Sample size (= 33)

value from t distribution using

ta/2 " degrees of freedomn — 1

B B
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Energy-
Performance Energy- Stops
Metric Estimate Base-Case | Delay-Min min Penalty
Completed Mean 911.12 918.09 488.09 849.73
trips* Low-Bound 908.1 912.6 451.5 833.7
Up-Bound 914.2 923.6 524.7 865.8
Mean 1171.48 1914.64 | 2332.64 | 2260.48
Z‘;’:s‘f,,i’ f  |low-Bound 1159.1 | 1877.2 | 20415 | 2147
Up-Bound 1183.87 1952.1 2623.8 2373.9
Total queue Mean 35885.6 | 29861.8 | 95772.9 | 54131.5
time** (s) Low-Bound 35241.8 | 29146.3 | 89286.9 | 49060.1
Up-Bound 36529.3 | 30577.4 | 102259 | 59202.9
NsierpepEE Mean 34.32 28.56 118.48 51.85
. Low-Bound 33.7 27.9 108.2 46.9
time**(s)
Up-Bound 34.9 29.3 128.8 56.8
GG Mean 75087.8 | 73558.9 124356 | 95392.9
time**(s) Low-Bound 74391.4 | 72690.3 119117 | 90511.7
Up-Bound 75784.1 | 74427.4 129594 100274
Mean 10.06 11.12 5.33 9.39
Fuel/Energy- 1 Bound 9.9 11 4.9 9.2
consumption
(gallons) Up-Bound 10.16 11.3 5.72 9.5
weorne® INL Ribee SINREL 17




On-going Tasks

 Sensitivity tests for energy-mobility trade-off reward functions

« Assessing impact of advanced technologies such as start-stop which shuts off
the vehicle engine when idling at intersections.

» Assessing impact of traffic state-unobservability (e.g., How to estimate the traffic
state when we have a mixed flow legacy and connected vehicles)
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Response to Previous Year Reviewers’ Comments

(Only the critical comments are addressed)

Question 1: Approach to performing the work

Reviewer 5: “The reviewer stated that it also does not make sense to develop tools until after the majority of critical scenario
functions that need to be modeled by the tools is defined. The reviewer cautioned that the current approach schedule has
significant risks because it lists tool development and scenario development as concurrent development tasks for FY 2018”

Response: The models that we developed is in fact a framework that can accommodate critical scenarios where additional
inputs/variables can be easily added under the proposed modelling framework

Reviewer 6: “The reviewer observed that the project did not address barriers or implementation challenges in the approach and
that the approach has the majority of the work biased to the end of the project. .............. The reviewer commented that the
modeling activity has the potential to feed into other DOE models, but is not focused on that; the project needs more focus on
DOE objectives and needs to start the work quickly in order to finish on time. The reviewer indicated that the project is currently
behind schedule due to the approach.

Response: We have defined the barriers based on the suggestion from DOE program managers that reflects the vision of the
EEMS program. In the first year of work, we set up goals of the project following our synthetic study report, a significant effort
has been made in FY17 to define goals (i.e., smooth traffic with minimized energy usage) and control strategies such as
Markov-based control and stochastic control. Our tasks are on track and we have completed all deliverables.

Question 4: Proposed Future Research

Reviewer 3: “The reviewer commented that a better project plan for the future research would be more useful and that a
suggestion would be to identify key work packages and milestones to provide high-level visibility to the project activities”

Response: We had several discussion with the program managers and the steering committee members to get the key
milestones. The latest quadchart for this project has details.
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Partners/Collaborators

 Pacific Northwest National Laboratory
— Hong Wang (Co-Pl), Sagar Patil (Postdoc)

* National Renewable Energy Laboratory

— Stanley Young (PI for the Urban Science pillar and providing directions for the project
goals and active tasks)

« Washington State University
— SMA Bin Al Islam—working as a graduate researcher
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Remaining challenges

« Execution in a simulation platform that can handle large scale network of
signalized intersections,

» Development of a fault-tolerant systems,

* ldentifying potential data-environment for execution of large-scale signal
optimization.
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Progress | Timeline Milestone Deliverables Status
FY18 Q3 Implementation of stochastic control |No Deliverable On Track
theory based signal scheme and
initial results for a corridor
On-Going |ry1804 Development of machine-learning A paper with results froma |On Track
4t Quarter |based signal control with energy and |real-world test network using |(Obtained
mobility objectives VISSIM-traffic simulator tool |initial
results)
FY19Q2 Large-scale implementation of Report/Paper
distributed control algorithms
FY18Q3 Fault-tolerant signal control Report/Paper
Proposed
FY18Q4 Layout on real-world implementation Report
considering data-sensor technologies in
an ACES environment
o __ ANy proposed future work is subject to change based on rundimng Tevel S
agone® TNL rivee  LINREL




Summary

Relevance Technical
Accomplishments
0 Develop signal control algorithm in an U Developed Reinforcement learning based
ACES environment and demonstrate control and a paper is submitted to the IEEE

energy savings for real-world test network  ITSC conf. 2018
calibrated and simulated in a state-of-art

traffic micro-sim tool—PTV VISSIM =l Five SCIeNTiE outpuis

(Journal/Conference) as of May 2018 (see

slide 18)
Proposed future
Approach (FY18) P
research
L Machine learning based techniques: Q Scalable distributed implementation for
- Reinforcement learning with multi- a network of signalized intersections
reward functions O Develop fault-tolerant control for signal
) Stochastic control theory, and multi- BysiElle
objective optimization to integrate energy O Estimate the impact advanced
and mobility objectives powertrain on energy minimization at

signalized intersections

@ Any proposed future work is subject to change based on funding levels
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Questions/Comments

This research is funded by the Energy Efficient Mobility
Systems (EEMS) Program of the Vehicle Technologies
Office, Department of Energy and ORNL appreciates the
support and guidance provided by DOE program managers
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